A shallow water approximation for water waves
نویسندگان
چکیده
منابع مشابه
Shallow Water Waves and Solitary Waves
Glossary Deep water A surface wave is said to be in deep water if its wavelength is much shorter than the local water depth. Internal wave A internal wave travels within the interior of a fluid. The maximum velocity and maximum amplitude occur within the fluid or at an internal boundary (interface). Internal waves depend on the density-stratification of the fluid. Shallow water A surface wave i...
متن کاملVariational Principle for the Generalized KdV-Burgers Equation with Fractal Derivatives for Shallow Water Waves
The unsmooth boundary will greatly affect motion morphology of a shallow water wave, and a fractal space is introduced to establish a generalized KdV-Burgers equation with fractal derivatives. The semi-inverse method is used to establish a fractal variational formulation of the problem, which provides conservation laws in an energy form in the fractal space and possible solution structures of t...
متن کاملShallow Water Waves over Polygonal Bottoms
The traditional shallow water model for waves propagating over varying bathymetry depends for its derivation on the asymptotic analysis of a Dirichlet-Neumann operator. This analysis however is restricted to smoothly varying topographies. We propose an adaptation to one dimensional polygonal bottoms using the conformal mapping idea of Hamilton and Nachbin. The asymptotic analysis of the Dirichl...
متن کاملMagnetohydrodynamic Shallow Water Waves: Linear Analysis
We present a linear analysis of inviscid, incompressible, magnetohydrodynamic (MHD) shallow water systems. In spherical geometry, a generic property of such systems is the existence of five wave modes. Three of them (two magneto-Poincaré modes and one magneto-Rossby mode) are previously known. The other two wave modes are strongly influenced by the magnetic field and rotation, and have substant...
متن کاملOn a Class of Boussinesq Equations for Shallow Water Waves
The Euler’s equations describing the dynamics of capillarygravity water waves in two-dimensions are considered in the limits of small-amplitude and long-wavelength under appropriate boundary conditions. Using a double-series perturbation analysis, a general Boussinesq type of equation is derived involving the small-amplitude and longwavelength parameters. A recently introduced sixth-order Bouss...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Kyoto Journal of Mathematics
سال: 2009
ISSN: 2156-2261
DOI: 10.1215/kjm/1248983028